Technical Article

BacNET and Metering Relays

Product: GreenMAX Support for BACnet

Article ID: 101717-DB/TB-01

Date: October 17, 2017

Summary:

This document defines how GreenMAX interfaces with the BACnet network for energy metering capabilities.

Background*

BACnet is "a data communication protocol for building automation and control networks." A data communication protocol is a set of rules governing the exchange of data over a computer network. The rules take the form of a specification that spells out what is required to conform to the protocol. The protocol defines everything from what kind of cable to use to how to form a request or command in a standard way. What makes BACnet special is that the rules relate specifically to the needs of building automation and control equipment, i.e., they cover things like how to ask for the value of a temperature, define a fan operating schedule, send a pump status alarm, and turn lights on and off.

However, each manufacturer's system is different. How does BACnet accomplish all these control tasks in a standard way?

BACnet solves the problem of cross-manufacturer compatibility by providing a standard way of representing the functions of any device. Examples are analog and binary inputs and outputs, schedules, control loops, and alarms. This standardized model of a device represents these common functions as collections of related information called "objects," each of which has a set of "properties" that further describe it. Each analog input, for instance, is represented by a BACnet "analog input object" which has a set of standard properties like present value, sensor type, location, alarm limits, etc. Some of these properties are required while others are optional. One of the object's most important properties is its identifier, a numerical name that allows BACnet to unambiguously access it. As devices have common "appearances" on the network in terms of their objects and properties, messages can manipulate this information in a standard way.

GreenMAX Metering Relay Product Description

Seamlessly integrate into BAS/BMS systems and integrate submetering technology with the GreenMAX Relay Control System featuring metering relays. The GreenMAX Lighting Control System is designed to connect to a Building Automation System (BAS). The GreenMAX system communicates with the BAS using standard BACnet IP protocol. One dedicated communication port is provided at each Command Module for Ethernet connection. The Command Modules mount in relay cabinets and provide control of line voltage lighting control circuits. Each relay cabinet contains one Command Module that requires a unique IP address and can control up to 48 relays or dimming modules. The Command Modules provide low voltage input connections for occupancy sensors, photocells, low voltage switch buttons, and contact closures. An Emergency Mode low voltage input is provided on each Command Module to trigger an emergency cabinet override in compliance with UL924. In addition, all digital switches, Command Modules, and low voltage input boards communicate on a secondary independent communication network called LumaCan. There are dedicated data ports for LumaCan interconnectivity.

Technical Article

Standard Object Types Supported:

	1	1					
		e i			c)	Values	
		able eabl		able	able		
		eata lete		ead	rite		
Object		De		Re	≥		
Туре	What is it?		Property				Notes
Device	Relay Panel	No	Name	Yes	No	GreenMAX	Each Cabinet connected to the IP network
	(IVIPO)					Cabinet[X.X].DEV	represents the node ID
			Description	Yes	No	GreenMAX	
			1	N	N -	Cabinet[x.x].DEV"	
			Location	Yes	NO	GreeniviAX Cabinet[X:X]	
			Time	Yes	No	-	
			synchronization				
			Local Time	Yes	Yes	-	
			Daylight	Yes	Yes	-	
			savings status				
5			Date	Yes	Yes	-	
Binary	Relay	No	Name	Yes	NO	Relay[xxx]	Une for each relay where [xxx] represents
Output			Present Value	Yes	Yes	O(open) 1(close) for	Priority 3-16 of present value property is
						each priority	writable, value 0, 1. Changes to priority
							1, 2 are rejected and used internally for
							emergency and panel override.
Analog	Dimming	No	Name	Yes	No	Relay[xxx]	One for each relay where [xxx] represents
Output	Relay		DuesentValue	Vaa	Vaa	0 100 fer each priority	the relay number in the panel.
			Present value	res	res	0-100 for each priority	writable value in percentage 0-100
							Changes to priority 1. 2 are rejected and
							used internally for emergency and panel
							override.
Binary	Input on Al	No	Name	Yes	No	Occ/Switch/Binary	One for each binary AI where [xxx]
Input	Card or		Description	N	Mar	Sensor[xx:xx].Bl	represents the input number.
	Digital		Present Value	Yes	Yes	0,1	Represents state of connected device to
	buttons						voltage switch, contact closure, or
							occupancy sensor. 255=occupied/active,
							0=unoccupied/inactive
Analog	Input on AI	No	Name	Yes	No	GreenMAX	One for each photocell AI where [x:y:z]
Input	Card		-			Photocell[x:y:z].Al	represents the node id and input number.
			Present Value	Yes	Yes	0-100	Represents relative light level of
							max light level reported by photocell in
							percentage.
Multi-	Behavior	No	Description	Yes	Yes	Current Schedule[x]	Direct control of Behavior mode for each
State						State.MSV	area are R/W control points
Value							
Schedule	System	No	Description	Yes	Yes	Schedule[x].SCH	Weekly schedules can be read, and,
Calendar	System	No	Description	Vec	Vec	Calendar[x] CAL	Exception Calendars can be read and
Calcinuu	Calendar	110	Description	105	103		written to

LEVITON

Technical Article

Additional Object Types Supported when Metering Relays are used:

						Values	
Ohion		creatable Deletable		Readable	Vriteable		
Object	What is it?	01	Proporty	<u> </u>	>		Notos
Analog	Total Kilowatt	No	Name	Yes	No	Relay[xxx]:KWH	One for each relay where [xxx] represents relay
value	nours (w)		Present Value	Yes	No	0- 2,147,483,647	Accumulator representing total value. Rolls over when max is achieved.
Analog Value	Total Apparent Energy (VA)	No	Name	Yes	No	Relay[xxx]:KVAH	One for each relay where [xxx] represents relay number.
			Present Value	Yes	No	0- 2,147,483,647	Accumulator representing total value. Rolls over when max is achieved.
Analog Value	Total Reactive Energy	No	Name	Yes	No	Relay[xxx]:KVARH	One for each relay where [xxx] represents relay number.
	(KVARh)		Present Value	Yes	No	0- 2,147,483,647	Accumulator representing total value. Rolls over when max is achieved.
Analog Value	Line Voltage (Vrms)	No	Name	Yes	No	Relay[xxx]:VRMS	One for each relay where [xxx] represents relay number.
			Present Value	Yes	No	0-38,2000	Voltage expressed in mili-Volts
Analog Value	Line Current (A _{rms})	No	Name	Yes	No	Relay[xxx]:ARMS	One for each relay where [xxx] represents relay number.
			Present Value	Yes	No	0-32,767	Current expressed in mili-Amps
Analog Value	Line Frequency (Hz)	No	Name	Yes	No	Relay[xxx]:Hz	One for each relay where [xxx] represents relay number.
			Present Value	Yes	No	0-327,670	Frequency express in mili-Herz
Analog Value	Instantaneous Power (W)	No	Name	Yes	No	Relay[xxx]:Watts	One for each relay where [xxx] represents relay number.
			Present Value	Yes	No	0 - 10,410,000	Active power in mili-Watts.
Analog Value	Instantaneous Reactive	No	Name	Yes	No	Relay[xxx]:KVAR	One for each relay where [xxx] represents relay number.
	Power (KVAR)		Present Value	Yes	No	0 - 10,410,000	Active power in mili-VA.
Analog Value	Instantaneous Affective	No	Name	Yes	No	Relay[xxx]:KVA	One for each relay where [xxx] represents relay number.
	Power (KVA)		Present Value	Yes	No	0 - 10,410,000	
Analog Value	Instantaneous Power Factor	No	Name	Yes	No	Relay[xxx]:PF	One for each relay where [xxx] represents relay number.
			Present Value	Yes	No	- 1.000-1.000	Power factor in %
Analog Value	Instantaneous Line Voltage Harmonic Distortion (% THD-V)	No	Name	Yes	No	Relay[xxx]:THD-V	One for each relay where [xxx] represents relay number.
			Present Value	Yes	No	0-100	Harmonic Distortion in percentage
Analog Value	Instantaneous Line	No	Name	Yes	No	Relay[xxx]:THD-I	One for each relay where [xxx] represents relay number.
	Instantaneous Harmonic Distortion (% THD-I)		Present Value	Yes	No	0-100	Harmonic Distortion in percentage

For more information visit <u>www.leviton.com/greenmax</u>.

*Background section content originally published at <u>http://www.bacnet.org/FAQ/HPAC-3-97.html</u>. Although content is the same, it has been edited slightly as appropriate for use in this article.

End of Document

Leviton Mfg. Co., Inc. Energy Management, Controls and Automation 20497 SW Teton Avenue, Tualatin, OR 97062 tel 800-736-6682 fax 503-404-5594 tech line (6:00AM-4:00PM PT Monday-Friday) 800-954-6004 © 2017 Leviton Manufacturing Co., Inc. All rights reserved. Subject to change without notice.